Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
PLoS One ; 19(4): e0301367, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625908

RESUMO

BACKGROUND: Understanding the immune response kinetics to SARS-CoV-2 infection and COVID-19 vaccination is important in nursing home (NH) residents, a high-risk population. METHODS: An observational longitudinal evaluation of 37 consenting vaccinated NH residents with/without SARS-CoV-2 infection from October 2020 to July 2022 was conducted to characterize the immune response to spike protein due to infection and/or mRNA COVID-19 vaccine. Antibodies (IgG) to SARS-CoV-2 full-length spike, nucleocapsid, and receptor binding domain protein antigens were measured, and surrogate virus neutralization capacity was assessed using Meso Scale Discovery immunoassays. The participant's spike exposure status varied depending on the acquisition of infection or receipt of a vaccine dose. Longitudinal linear mixed effects modeling was used to describe trajectories based on the participant's last infection or vaccination; the primary series mRNA COVID-19 vaccine was considered two spike exposures. Mean antibody titer values from participants who developed an infection post receipt of mRNA COVID-19 vaccine were compared with those who did not. In a subset of participants (n = 15), memory B cell (MBC) S-specific IgG (%S IgG) responses were assessed using an ELISPOT assay. RESULTS: The median age of the 37 participants at enrollment was 70.5 years; 30 (81%) had prior SARS-CoV-2 infection, and 76% received Pfizer-BioNTech and 24% Moderna homologous vaccines. After an observed augmented effect with each spike exposure, a decline in the immune response, including %S IgG MBCs, was observed over time; the percent decline decreased with increasing spike exposures. Participants who developed an infection at least two weeks post-receipt of a vaccine were observed to have lower humoral antibody levels than those who did not develop an infection post-receipt. CONCLUSIONS: These findings suggest that understanding the durability of immune responses in this vulnerable NH population can help inform public health policy regarding the timing of booster vaccinations as new variants display immune escape.


Assuntos
COVID-19 , Humanos , Idoso , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Georgia , SARS-CoV-2 , Vacinação , Imunidade , Casas de Saúde , RNA Mensageiro , Imunoglobulina G , Anticorpos Antivirais
3.
PLoS One ; 17(1): e0261588, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35025906

RESUMO

Results from sampling healthcare surfaces for pathogens are difficult to interpret without understanding the factors that influence pathogen detection. We investigated the recovery of four healthcare-associated pathogens from three common surface materials, and how a body fluid simulant (artificial test soil, ATS), deposition method, and contamination levels influence the percent of organisms recovered (%R). Known quantities of carbapenemase-producing KPC+ Klebsiella pneumoniae (KPC), Acinetobacter baumannii, vancomycin-resistant Enterococcus faecalis, and Clostridioides difficile spores (CD) were suspended in Butterfield's buffer or ATS, deposited on 323cm2 steel, plastic, and laminate surfaces, allowed to dry 1h, then sampled with a cellulose sponge wipe. Bacteria were eluted, cultured, CFU counted and %R determined relative to the inoculum. The %R varied by organism, from <1% (KPC) to almost 60% (CD) and was more dependent upon the organism's characteristics and presence of ATS than on surface type. KPC persistence as determined by culture also declined by >1 log10 within the 60 min drying time. For all organisms, the %R was significantly greater if suspended in ATS than if suspended in Butterfield's buffer (p<0.05), and for most organisms the %R was not significantly different when sampled from any of the three surfaces. Organisms deposited in multiple droplets were recovered at equal or higher %R than if spread evenly on the surface. This work assists in interpreting data collected while investigating a healthcare infection outbreak or while conducting infection intervention studies.


Assuntos
Bactérias/isolamento & purificação , Bandagens/microbiologia , Celulose/química , Manejo de Espécimes/métodos , Acinetobacter baumannii/isolamento & purificação , Clostridioides difficile/isolamento & purificação , Humanos , Klebsiella pneumoniae/isolamento & purificação , Plásticos/química , Aço/química , Propriedades de Superfície , Enterococos Resistentes à Vancomicina/isolamento & purificação
4.
JAMA Netw Open ; 4(10): e2128615, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34618037

RESUMO

Importance: The number of clinics marketing stem cell products for joint diseases, chronic pain, and most recently, COVID-19, has increased despite warnings from the US Food and Drug Administration that stem cell products for these and other indications have not been proven safe or effective. Objective: To examine bacterial infections in 20 patients who received umbilical cord blood-derived products marketed as stem cell treatment. Design, Setting, and Participants: This case series is a national public health investigation including case-finding, medical record review and abstraction, and laboratory investigation, including sterility testing of products and whole-genome sequencing of patient and product isolates. Participants included patients who developed bacterial infections following administration of umbilical cord blood-derived products marketed as stem cell treatment during August 2017 to September 2018. Data analysis was performed from March 2019 to September 2021. Exposures: Umbilical cord blood-derived products marketed as stem cell treatment. Main Outcomes and Measures: Data were collected on patient infections and exposures. The Centers for Disease Control and Prevention performed sterility testing on undistributed and distributed vials of product marketed as stem cell treatment and performed whole-genome sequencing to compare patient and product bacterial isolates. Results: Culture-confirmed bacterial infections were identified in 20 patients (median [range] age, 63 [2-89] years; 13 male patients [65%]) from 8 US states who sought stem cell treatment for conditions including pain, osteoarthritis, rheumatoid arthritis, and injury; all but 1 required hospitalization. The most frequently isolated bacteria from patients with infections were common enteric species, including Escherichia coli (14 patients) and Enterobacter cloacae (7 patients). Of unopened, undistributed products sampled for testing, 65% (22 of 34 vials) were contaminated with at least 1 of 16 bacterial species, mostly enteric. A patient isolate from Arizona matched isolates obtained from products administered to patients in Florida, and patient isolates from Texas matched undistributed product sent from the company in California. Conclusions and Relevance: Unapproved stem cell products can expose patients to serious risks without proven benefit. Sequencing results suggest a common source of extensive contamination, likely occurring during the processing of cord blood into product. Patients and health care practitioners who are considering the use of unapproved products marketed as stem cell treatment should be aware of their unproven benefits and potential risks, including serious infections.


Assuntos
Infecções Bacterianas/etiologia , Segurança do Sangue/estatística & dados numéricos , Transplante de Células-Tronco de Sangue do Cordão Umbilical/efeitos adversos , Surtos de Doenças , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Infecções Bacterianas/epidemiologia , Infecções Bacterianas/prevenção & controle , Segurança do Sangue/normas , Centers for Disease Control and Prevention, U.S. , Criança , Pré-Escolar , Transplante de Células-Tronco de Sangue do Cordão Umbilical/normas , Feminino , Humanos , Masculino , Marketing , Pessoa de Meia-Idade , Avaliação de Resultados em Cuidados de Saúde , Vigilância em Saúde Pública , Estados Unidos/epidemiologia , United States Food and Drug Administration , Adulto Jovem
5.
Open Forum Infect Dis ; 8(3): ofab048, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33723510

RESUMO

BACKGROUND: To estimate the infectious period of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in older adults with underlying conditions, we assessed duration of coronavirus disease 2019 (COVID-19) symptoms, reverse-transcription polymerase chain reaction (RT-PCR) positivity, and culture positivity among nursing home residents. METHODS: We enrolled residents within 15 days of their first positive SARS-CoV-2 test (diagnosis) at an Arkansas facility from July 7 to 15, 2020 and instead them for 42 days. Every 3 days for 21 days and then weekly, we assessed COVID-19 symptoms, collected specimens (oropharyngeal, anterior nares, and saliva), and reviewed medical charts. Blood for serology was collected on days 0, 6, 12, 21, and 42. Infectivity was defined by positive culture. Duration of culture positivity was compared with duration of COVID-19 symptoms and RT-PCR positivity. Data were summarized using measures of central tendency, frequencies, and proportions. RESULTS: We enrolled 17 of 39 (44%) eligible residents. Median participant age was 82 years (range, 58-97 years). All had ≥3 underlying conditions. Median duration of RT-PCR positivity was 22 days (interquartile range [IQR], 8-31 days) from diagnosis; median duration of symptoms was 42 days (IQR, 28-49 days). Of 9 (53%) participants with any culture-positive specimens, 1 (11%) severely immunocompromised participant remained culture-positive 19 days from diagnosis; 8 of 9 (89%) were culture-positive ≤8 days from diagnosis. Seroconversion occurred in 12 of 12 (100%) surviving participants with ≥1 blood specimen; all participants were culture-negative before seroconversion. CONCLUSIONS: Duration of infectivity was considerably shorter than duration of symptoms and RT-PCR positivity. Severe immunocompromise may prolong SARS-CoV-2 infectivity. Seroconversion indicated noninfectivity in this cohort.

6.
Appl Environ Microbiol ; 86(17)2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32591388

RESUMO

The infection of health care workers during the 2013 to 2016 Ebola outbreak raised concerns about fomite transmission. In the wake of the coronavirus disease 2019 (COVID-19) pandemic, investigations are ongoing to determine the role of fomites in coronavirus transmission as well. The bacteriophage phi 6 has a phospholipid envelope and is commonly used in environmental studies as a surrogate for human enveloped viruses. The persistence of phi 6 was evaluated as a surrogate for Ebola virus (EBOV) and coronaviruses on porous and nonporous hospital surfaces. Phi 6 was suspended in a body fluid simulant and inoculated onto 1-cm2 coupons of steel, plastic, and two fabric curtain types. The coupons were placed at two controlled absolute humidity (AH) levels: a low AH of 3.0 g/m3 and a high AH of 14.4 g/m3 Phi 6 declined at a lower rate on all materials under low-AH conditions, with a decay rate of 0.06-log10 PFU/day to 0.11-log10 PFU/day, than under the higher AH conditions, with a decay rate of 0.65-log10 PFU/h to 1.42-log10 PFU/day. There was a significant difference in decay rates between porous and nonporous surfaces at both low AH (P < 0.0001) and high AH (P < 0.0001). Under these laboratory-simulated conditions, phi 6 was found to be a conservative surrogate for EBOV under low-AH conditions in that it persisted longer than Ebola virus in similar AH conditions. Additionally, some coronaviruses persist longer than phi 6 under similar conditions; therefore, phi 6 may not be a suitable surrogate for coronaviruses.IMPORTANCE Understanding the persistence of enveloped viruses helps inform infection control practices and procedures in health care facilities and community settings. These data convey to public health investigators that enveloped viruses can persist and remain infective on surfaces, thus demonstrating a potential risk for transmission. Under these laboratory-simulated Western indoor hospital conditions, we assessed the suitability of phi 6 as a surrogate for environmental persistence research related to enveloped viruses, including EBOV and coronaviruses.


Assuntos
Bacteriófago phi 6/isolamento & purificação , Bacteriófago phi 6/fisiologia , Coronavirus/fisiologia , Ebolavirus/fisiologia , Microbiologia Ambiental , Fômites/virologia , Inativação de Vírus , Betacoronavirus/fisiologia , COVID-19 , Coronavirus/isolamento & purificação , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Ebolavirus/isolamento & purificação , Doença pelo Vírus Ebola/transmissão , Doença pelo Vírus Ebola/virologia , Hospitais , Humanos , Umidade , Pandemias , Pneumonia Viral/transmissão , Porosidade , SARS-CoV-2 , Temperatura
7.
Clin Infect Dis ; 71(7): e178-e185, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31872853

RESUMO

BACKGROUND: In July 2018, the Arkansas Department of Health (ADH) was notified by hospital A of 3 patients with bloodstream infections (BSIs) with a rapidly growing nontuberculous Mycobacterium (NTM) species; on 5 September 2018, 6 additional BSIs were reported. All were among oncology patients at clinic A. We investigated to identify sources and to prevent further infections. METHODS: ADH performed an onsite investigation at clinic A on 7 September 2018 and reviewed patient charts, obtained environmental samples, and cultured isolates. The isolates were sequenced (whole genome, 16S, rpoB) by the Centers for Disease Control and Prevention to determine species identity and relatedness. RESULTS: By 31 December 2018, 52 of 151 (34%) oncology patients with chemotherapy ports accessed at clinic A during 22 March-12 September 2018 had NTM BSIs. Infected patients received significantly more saline flushes than uninfected patients (P < .001) during the risk period. NTM grew from 6 unused saline flushes compounded by clinic A. The identified species was novel and designated Mycobacterium FVL 201832. Isolates from patients and saline flushes were highly related by whole-genome sequencing, indicating a common source. Clinic A changed to prefilled saline flushes on 12 September as recommended. CONCLUSIONS: Mycobacterium FVL 201832 caused BSIs in oncology clinic patients. Laboratory data allowed investigators to rapidly link infections to contaminated saline flushes; cooperation between multiple institutions resulted in timely outbreak resolution. New state policies being considered because of this outbreak include adding extrapulmonary NTM to ADH's reportable disease list and providing more oversight to outpatient oncology clinics.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Neoplasias , Sepse , Arkansas , Humanos , Infecções por Mycobacterium não Tuberculosas/epidemiologia , Neoplasias/complicações , Micobactérias não Tuberculosas , Pacientes Ambulatoriais
8.
J Clin Microbiol ; 55(10): 2996-3005, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28747370

RESUMO

The emerging multidrug-resistant pathogenic yeast Candida auris represents a serious threat to global health. Unlike most other Candida species, this organism appears to be commonly transmitted within health care facilities and causes health care-associated outbreaks. To better understand the epidemiology of this emerging pathogen, we investigated the ability of C. auris to persist on plastic surfaces common in health care settings compared with that of Candida parapsilosis, a species known to colonize the skin and plastics. Specifically, we compiled comparative and quantitative data essential to understanding the vehicles of spread and the ability of both species to survive and persist on plastic surfaces under controlled conditions (25°C and 57% relative humidity), such as those found in health care settings. When a test suspension of 104 cells was applied and dried on plastic surfaces, C. auris remained viable for at least 14 days and C. parapsilosis for at least 28 days, as measured by CFU. However, survival measured by esterase activity was higher for C. auris than C. parapsilosis throughout the 28-day study. Given the notable length of time Candida species survive and persist outside their host, we developed methods to more effectively culture C. auris from patients and their environment. Using our enrichment protocol, public health laboratories and researchers can now readily isolate C. auris from complex microbial communities (such as patient skin, nasopharynx, and stool) as well as environmental biofilms, in order to better understand and prevent C. auris colonization and transmission.


Assuntos
Antifúngicos/farmacologia , Candida parapsilosis/crescimento & desenvolvimento , Candida/crescimento & desenvolvimento , Candidíase/transmissão , Infecção Hospitalar/microbiologia , Plásticos , Candida/isolamento & purificação , Candida parapsilosis/isolamento & purificação , Candidíase/microbiologia , Farmacorresistência Fúngica , Humanos , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA